Roads act as corridors for the spread of alien plant species in the mountainous regions: A case study of Kashmir Valley, India

Pervaiz A. Dar¹, Zafar A. Reshi² & Manzoor A. Shah³*

Department of Botany, University of Kashmir, Srinagar 190006, India

Abstract: The distribution and abundance of alien plant species can be strongly influenced by corridors that facilitate their dispersal. Although roads have been implicated as an important contributory factor in biological invasions, their precise role as conduits in the spatial spread of alien species remains poorly understood. In order to investigate the role of roads in alien plant invasions, we explored diversity and abundance of native and non-native plant species along two road transects (50 and 56 km in length, respectively) and surveyed 5 sites (100 x 100 m) at each of these transects. The sites namely Zakoora, Gulabagh, Daren Nagbal, Ganderbal, Kangan (along transect I) and Galendar, Lethpoora, Awantipoora, Sangam, Qazigund (along transect II) are located in four districts (Srinagar, Ganderbal, Pulwama and Anantnag) of Kashmir valley in India. Floristic surveys during the growing season in the study sites revealed occurrence of 197 vascular plant species. Out of these 136 species were non-native and only 61 were native. 57 non-native species were invasive, 71 naturalized and 08 were casual. Compared to alien plant species, richness and abundance of native species increased with increase in distance perpendicular to the road. The high percentage (69 %) of alien plant species in the roadside flora and also the greater number of alien plant species close to the roads clearly indicate that roadsides act as anthropogenic corridors for the spread of alien plant species.

Resumen: La distribución y la abundancia de las especies vegetales exóticas pueden estar influenciadas fuertemente por corredores que faciliten su dispersión. Aunque los caminos han estado implicados como un factor importante que contribuye a las invasiones biológicas, su papel preciso como conductos en la distribución espacial de las especies exóticas sigue estandomalentendido. Para investigar el papel de los caminos en las invasiones de plantas exóticas, exploramos la diversidad y la abundancia de especies de plantas nativas y no nativas a lo largo de dos transectos en caminos (50 y 56 km de longitud, respectivamente) e hicimos levantamientos encinco sitios (100 x 100 m) en cada uno de estos transectos. Los sitios Zakoora, Gulabagh, Daren Nagbal, Ganderbal, Kangan (a lo largo del transecto I) y Galendar, Lethpoora, Awantipoora, Sangam, Qazigund (a lo largo del transecto II) están ubicados en cuatro distritos (Srinagar, Ganderbal, Pulwama y Anantnag) del valle de Cachemira en la India. Los levantamientos florísticos durante la época de crecimiento en los sitios de estudio revelaron la presencia de 197 especies de plantas vasculares. De éstas, 136 fueron no nativas y sólo 61 fueron nativas. Cincuenta y siete especies exóticas fueron invasoras, 71 naturalizadas y ocho fueron casuales. En comparación con las especies exóticas, la riqueza y la abundancia de las especies nativas aumentaron con el aumento de la distancia perpendicular al camino. El porcentaje alto (69 %) de especies de plantas exóticas en la flora de la orilla del camino carretera, así como el número mayor de especies de plantas exóticas cerca de los caminos, indican claramente que las orillas de los caminos sirven como corredores antropogénicos para la propagación de especies de plantas exóticas.

Resumo: A distribuição e abundância de espécies de plantas exóticas podem ser fortemente

*Corresponding Author; e-mail: mashah75@yahoo.com
influenciadas por corredores que facilitam sua dispersão. Embora as estradas tenham sido implicadas como um fator importante que contribui para as invasões biológicas, seu papel preciso como condutores na propagação espacial de espécies exóticas continua a ser mal compreendido. A fim de investigar o papel das estradas nas invasões de plantas exóticas, explorámos a diversidade e abundância de espécies vegetais nativas e não-nativas ao longo de dois transeptos de estrada (50 e 56 km de comprimento, respectivamente) e inspecionaram-se cinco sítios (100 x 100 m) em cada um desses transeptos. Os locais, nomeadamente Zakooara, Gulabbagh, Daren Nagbal, Ganderbal, Kangan (ao longo do transepto I) e Galendar, Lethpoora, Awantipoora, Sangam, Qazigund (ao longo transepto II) estão localizados em quatro distritos (Srinagar, Ganderbal, Pulwama e Anantnag) do vale da Caxemira na Índia. Os levantamentos florísticos, durante o período de crescimento nas áreas de estudo, revelaram a ocorrência de 197 espécies de vegetais vasculares. Dessas, 136 espécies eram não-nativas e apenas 61 eram nativas. Das espécies não-nativas 57 eram invasivas, 71 eram naturalizadas e 8 eram casuais. Em comparação com espécies de plantas exóticas, a riqueza específica e a abundância de espécies nativas aumentaram com o aumento da distância perpendicular à estrada. A alta percentagem (69 %) de espécies de plantas exóticas na flora de beira de estrada e também maior número de espécies de plantas exóticas perto das estradas indicam claramente que aquelas atuam como corredores antropogénicas para a propagação de espécies vegetais exóticas.

Key words: Abundance, alien species, Himalaya, invasion, native.

Introduction

Invasion by alien species is considered to be second major threat to biodiversity worldwide which is in turn promoted by disturbance, fragmentation (Kumar & Mathur 2014; Raghubanshi & Tripathi 2009; Sharma & Raghubanshi 2010) etc. In non-native habitats, the spread of a species is limited by propagule pressure, abiotic factors and biotic interactions with competitors, consumers and mutualists, and all these factors may vary along environmental gradients, such as latitude, continentality and altitude (Dietz & Edwards 2006; Hallet 2006). A number of studies in recent decades have examined factors contributing to spread and successful colonization of exotic species in non-native habitats. Roads are often cited as contributing to the spatial spread of alien species, since they represent the primary pathways for the introduction of alien plant species, especially for generalist species with short life spans and high reproductive rates (Parendes & Jones 2000; Spellerberg 1998). Fortunately, most alien species growing along roadsides are incapable of colonizing less disturbed natural environments. Roadsides, however, may still serve as starting points for some species to spread from the edges to the interiors of pristine or naturally disturbed environments (Cadenasso & Pickett 2001; Murcia 1995). Roadsides are also reported to act as reservoirs of alien plant propagules that can be liberated during anthropogenic disturbance events (Parendes & Jones 2000) in natural habitats. Thus, roadsides provide both habitat and potential dispersal corridors for exotic plant species (Amor & Stevens 1975; Gelbard & Belnap 2003; Pauchard & Alaback 2006; Tyser & Worley 1992).

Because of their role in alien plant invasions, roads are important places to examine patterns of distribution of alien species and their potential for invasion into interior habitats (Trombulak & Frissell 2000). Additionally, roadsides are useful for studying influence of climatic factors and dispersal characteristics on alien species because the roads themselves provide a consistent disturbed environment across a wide elevational gradient (D’Antonio et al. 2001; Milton & Dean 1998; Spellerberg 1998; Tyser & Worley 1992; Wilson et al. 1992). At the local scale, habitat filtering may have an important effect on species richness and composition of roadside plant communities (Gelbard & Belnap 2003; Parendes & Jones 2000).

Although mountain ecosystems are considered to be at low risk of plant invasion due to their harsh climate and limited human activities but the promotion of mountain areas, particularly the Kashmir Valley, as global tourist destination has put these ecosystems at higher risk of invasion. It
is in this context that the present study was
carried out to study (i) how do alien plant species
distribute along roadsides? (ii) To what extent the
richness and abundance of native and alien plant
species are dependent on the perpendicular
distance from the road?

Materials and methods

Study area

The present study was carried out in Kashmir
Valley - a phytogeographically distinct south Asian
region nestled in the northwestern folds of
Himalayan biodiversity hotspot. The region has an
area of about 15,948 km², with nearly 64 % of the
total area being mountainous. The region lies
between coordinates of 32° 20’ to 34° 50’ North
latitude and 73° 55’ to 75° 35’ East longitude
(Hussain 2002).

Study sites

The study sites were identified and selected
using satellite imagery data, and available maps.
A total of ten roadside sites (five along each tran-
sect) of 100 × 100 m size were selected along two
road transects, 50 (transect I) and 56 (transect II)
kms in length. These roadside sites were so
selected that they were at least 500 m apart, so as
to capture the uniqueness and variability across
the sites. It is important to note that the sites
namely Zakoora, Gulabbagh, Daren Nagbal,
Ganderbal, Kangan (along transect I) and Galex-
dar, Lethpoora, Awantipoora, Sangam, Qazigund
(along transect II) are located in four districts
(Srinagar, Ganderbal, Pulwama and Anantnag) of
Kahmir valley.

Vegetation sampling

Present study was conducted employing strati-
fied sampling (strata being herbs, shrubs and
trees) technique using 1 m² quadrats as sampling
units to survey vegetation along roads. In case of
runners, each node was taken equivalent to an
individual and in respect of other rhizomatous
species each upright shoot was considered as an
individual. Each study site was sampled thrice
(representing three different seasons) during the
year 2009 to compile a conspectus of the plant
species growing in these habitats. This was done
so as to collect flowering specimens of all the
species as different species flower during different
seasons. The plant specimens collected from various
study sites were then identified using identified
specimens of Kashmir University Herbarium.
Quadrat data were used for computation of
abundance by using following formula:

\[
\text{Abundance} = \frac{\text{Total number of individuals of a species}}{\text{Number of quadrats in the which species occurred}}
\]

At four sites (two along each transect), we
located one 100 × 2 m² plot, selected randomly on
one side of the road, with the larger side of the
rectangle parallel to the road. We located another
plot 100 × 2 m², perpendicular to the road an
interior plot (Fig. 1), and then divided the
perpendicular plot into 10 equal parts and
recorded the richness and abundance of vascular
plant species using a quadrat of 1 m² size.

Fig. 1. Parallel and perpendicular plots.

Native geographical range of the plant species
was obtained from various sources [mostly Khuroo
et al. (2007) and specialised internet web pages
(www.efloaras.org and GRIN)].

Data analysis

For evaluating the role of roads in the spread
of alien species, Spearman’s Correlation coefficient
was calculated between perpendicular distance
and richness (separately for native and alien
species) and between perpendicular distance and
abundance of species (separately for native and
alien species) using SPSS software. Then the
significance of the relationship was evaluated
using t-test ($P < 0.001$).
Table 1. Distribution of native and alien plant species in various families.

<table>
<thead>
<tr>
<th>Group/Family</th>
<th>Total no. of species</th>
<th>Total no. of native species</th>
<th>Total no. of alien species</th>
<th>No. of casual species</th>
<th>No. of naturalized species</th>
<th>No. of invasive species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pteridophytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equisetaceae</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Monocots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Iridaceae</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Juncaceae</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Liliaceae</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Poaceae</td>
<td>27</td>
<td>9</td>
<td>18</td>
<td>1</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Dicot.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Apiaceae</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Apocynaceae</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Araliaceae</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>33</td>
<td>6</td>
<td>27</td>
<td>2</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Balsaminaceae</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Boraginaceae</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Brassicaceae</td>
<td>14</td>
<td>4</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Cannabiaceae</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Caprifoliaceae</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Caryophyllaceae</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Chenopodiaceae</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Convolvulaceae</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Elaeagnaceae</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>16</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Geraniaceae</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>-</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Oleaceae</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Onagraceae</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Oxalidaceae</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Papavaroaceae</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plantaginaceae</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Polygonaceae</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Primulaceae</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Scrophulariaceae</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Solanaceae</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Urticaceae</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Verbenaceae</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Violaceae</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2. Categorization of native and alien plant species collected from all study sites in different groups on the basis of growth form and life span.

<table>
<thead>
<tr>
<th>Growth form</th>
<th>Category</th>
<th>Total</th>
<th>Native</th>
<th>Casual</th>
<th>Naturalized</th>
<th>Invasive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbaceous</td>
<td></td>
<td>189</td>
<td>56</td>
<td>7</td>
<td>69</td>
<td>57</td>
</tr>
<tr>
<td>Shrubs/Sub-shrubs/ lianas</td>
<td></td>
<td>7</td>
<td>5</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Trees</td>
<td></td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Life span</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annuals</td>
<td></td>
<td>95</td>
<td>26</td>
<td>7</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>Biennials</td>
<td></td>
<td>11</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Perennials</td>
<td></td>
<td>91</td>
<td>33</td>
<td>1</td>
<td>34</td>
<td>23</td>
</tr>
</tbody>
</table>

Results

The present study revealed the occurrence of 197 plant species. Out of these 136 species were alien and only 61 were native. Of the 136 alien species, 57 were invasive, 71 were naturalized and 08 were casuals. These species belonged to 40 families (1 pteridophyte, 33 dicot and 5 monocot families). The most representative families were Asteraceae (33 spp.), Poaceae (27 spp.), Fabaceae (16 spp.), Brassicaceae (14 spp.) and Lamiaceae (10 spp.) [Table 1].

Out of 197 species, 189 species (56 natives, 07 casuals, 69 naturalized and 57 invasive) were herbs, 07 (04 natives and 03 naturalized) were shrubs and only 01 (native) was a tree. Besides, 95 (26 natives, 07 casuals, 34 naturalized and 28 invasive) were annual, 11 (02 natives, 03 naturalized and 06 invasive) were biennial and 91 were perennial species (33 natives, 01 casual, 34 naturalized and 23 invasive) [Table 2].

The richness of alien species correlated negatively with the perpendicular distance of the roadside from road \((r = -0.91, R^2 = 0.8405, P < 0.001, \text{Fig. 2})\). The richness of alien plant species was maximum (i.e., 46 species m\(^{-2}\)) near the road and it gradually decreased reaching a minimum of 32 species m\(^{-2}\) at a perpendicular distance of 81 - 100 m from the road. On the other hand, the richness of alien species varied insignificantly with the perpendicular distance from the road \((r = 0.46, R^2 = 0.5991, P < 0.001, \text{Fig. 4})\).

Discussion

The present study clearly reveals that roadsides harbour higher percentage of alien plant species (~69 %) as compared to native species (~31%). Other workers such as Gelbard & Belnap (2003); Parendes & Jones (2000); Tikka et al. (2001) have also obtained similar results. Several factors, such as greater dispersion due to traffic, higher amount of water and light, lower competition with
Fig. 3. Variation in native species richness (species m⁻²) along a gradient of 100 m from the road (r = 0.63, P < 0.001).

Fig. 4. Variation in average abundance (no. of individuals m⁻²) of native species along a gradient of 100 m from the road (r = 0.46, P < 0.001).

Fig. 5. Variation in average abundance (no. of individuals m⁻²) of alien species along a gradient of 100 m from the road (r = 0.77, P < 0.001).

The present study indicates an increase in average abundance of native species with increase in the perpendicular distance from the road. On the other hand, the variation in the average

...
abundance of alien plant species was found to be inconsistent with the perpendicular distance from the road. The main reason for this pattern could be that the expansion of a population is channeled along the road by failure of establishment away from the road (Christen & Matlack 2006), although seed dispersal occurs equally in all directions. This results in a higher abundance of alien species close to the road. Decrease in abundance of alien species and increase in abundance of native species with distance from the road were also reported by Barbosa et al. (2010).

These observations assume significance particularly in view of the promotion of Kashmir valley as a tourist destination, as construction of roads and railway lines will spread alien plant species to ever greater ranges. Hence creation of tourism infrastructure particularly construction of roads is likely to put the ecosystems of the region at higher risk of invasion.

Acknowledgements

We thank Council of Scientific and Industrial Research (CSIR), India, for providing financial assistance to Mr. Pervaiz A. Dar. We also thank Dr. A. R. Naqshi for his help in identification of plant specimens. The anonymous reviewer is thankfully acknowledged for his critical comments on the earlier version of this manuscript.

References

Pauchard, A. & P. B. Alaback. 2006. Edge type defines alien plant species invasions along Pinus contorta

(Received on 16.01.2013 and accepted after revisions, on 17.09.2013)