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Abstract: The present, study carried out in Haryana, explores potential of MODIS data for 
scaling constant light use efficiency (ε*) for computing the net primary productivity (NPP) of 
wheat crop following Monteith’s concept. We compared three scaling approaches ε* in time and 
space by using three different MODIS derived surface wetness indices, i.e. vegetation 
temperature condition index (VTCI), water deficit index (WDI) and land surface wetness index 
(LSWI). The approach using MODIS observations allows estimation of temporal evolution and 
geographical distribution of NPP of wheat in Haryana. High levels of seasonal NPP in wheat 
were observed in northern districts of Kaithal, Kurushretra and Fatehabad compared to 
districts in southern and western Haryana. Among three water stress scalars, the seasonal NPP 
simulated with LUE (LSWI) was higher in the magnitude (950-1200 g DM m-2) and mean NPP 
(1030 g DM m-2). Further, simulated NPP of wheat with LUE (LSWI) had good agreement with 
observed crop NPP of wheat (R2=0.39, RMSE=64.9 g DM m-2) compared to simulated NPP with 
LUE (VTCI) and LUE (WDI). Statistical analysis revealed that the dynamics and magnitude of 
absorbed photosynthetically active radiation (APAR) over wheat growing season mainly 
determined the spatio-temporal dynamics of NPP. The LUE estimates from LWSI were within 
range of experimental LUE of wheat but did not show significant differences that cause 
variability in NPP.  

 
Resumen: El presente estudio, llevado a cabo en Haryana, explora el potencial de los datos 

MODIS para transformar a otras escalas la eficiencia de uso de luz constante (ε*) para el cálculo 
de la productividad primaria neta (PPN) del trigo a partir del concepto de Monteith. 
Comparamos tres enfoques para el escalado de ε* en tiempo y espacio por medio del uso de tres 
diferentes índices de humedad de la superficie derivados de MODIS (con sus siglas en inglés): el 
índice de la condición térmica de la vegetación (VTCI), el índice de déficit hídrico (WDI) y el 
índice de humedad de la superficie terrestre (LSWI). El enfoque basado en las observaciones 
MODIS permite estimar la evolución temporal y la distribución geográfica de la PPN del trigo 
en Haryana. Se observaron niveles altos de PPN estacional en el trigo en los distritos norteños 
de Kaithal, Kurushretra y Fatehabad, en comparación con los distritos en el sur y occidente de 
Haryana. Entre tres escalares de estrés hídrico, la PPN estacional simulada con LUE (LSWI) 
fue mayor en el intervalo de la PPN (950-1200 g DM/m2) y en su valor medio (1030 g DM/m2). 
Además, la PPN simulada de trigo con LUE (LSWI) tuvo una concordancia buena con la PPN 
observada de la cosecha de trigo (R2=0.39, RMSE=64.9 g DM m-2), en comparación con la PPN 
simulada con LUE (VTCI) y LUE (WDI). El análisis estadístico reveló que la dinámica y la 
magnitud de la radiación fotosintéticamente activa absorbida (RFAA) a través de la temporada 
de crecimiento del trigo determinaron principalmente la dinámica espacio-temporal de la PPN. 
Las estimaciones de LUE a partir del LWSI estuvieron dentro del intervalo del LUE 
experimental del trigo, pero no mostraron diferencias significativas capaces de causar 
variabilidad en la PPN. 
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Resumo: O presente estudo, realizado em Haryana, explora o potencial de dados do MODIS 
para a graduação da constante de eficiência do uso da luz (e*) para calcular a produtividade 
primária líquida (NPP) da cultura de trigo de acordo com o conceito de Monteith. Compararam-
se três abordagens de graduação de e*, no tempo e no espaço, usando três índices MODIS 
diferentes derivados do índice de superfície húmida i.e. índice da condição de temperatura da 
vegetação (VTCI), índice do deficit hídrico (WDI) e índice de humidade da superfície do solo 
(LSWI). A aproximação que usa as observações do MODIS permite a estimação da evolução 
temporal e a distribuição geográfica da NPP do trigo em Haryana. Os elevados níveis sazonais 
da NPP no trigo foram observados em distritos do norte de Kaithal, de Kurushretra e de 
Fatehabad comparados aos distritos do sul e a ocidente em Haryana. Entre os três valores do 
stress hídrico, a NPP sazonais, simuladas com LUE (LSWI), era a mais elevada (950-1200 g 
DM/m2) com um valor médio de NPP de 1030 g DM/m2. Além disso, o valor de NPP simulado do 
trigo com LUE (LSWI) era convergente com o valor observado de NPP obtido em condições de 
cultura (R2=0.39, RMSE=64.9 g DM m-2) comparado com o valor simulado de NPP com o LUE 
(VTCI) e o LUE (WDI). A análise estatística revelou que a dinâmica e o valor da radiação 
fotossintética activa absorvida na estação de crescimento do trigo (APAR) determinaram, 
principalmente, a dinâmica espaço-temporal da NPP. As estimativas de LUE a partir de LWSI 
encontravam-se dentro do intervalo experimental de LUE para o trigo mas não mostravam 
diferenças significativas que justificassem a variabilidade da NPP. 

Key words:  Light use efficiency, MODIS, net primary productivity, water stress, 
wheat. 

Introduction 

Net primary productivity (NPP) is an important 
biophysical component of the ecosystem function 
and plays an important role in analyzing carbon 
balance and spatio-temporal distribution of CO2. 
Remotely sensed data from sensors such as 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) are useful for monitoring the productivity 
from regional to global scales (Yuan et al. 2006) 
because reflectance can be converted into biophysi-
cally meaningful descriptors of the land surface, 
including net primary productivity (NPP). NPP 
represents the amount of new carbon stored as 
biomass in various plant parts and is a 
quantitative measure of plant growth and carbon 
uptake (Waring & Running 1998). NPP is related 
to photosynthetic activity and can be estimated 
from remotely sensed data by observing the 
patterns of light absorption (Sellers et al. 1995). 
Remote sensing techniques have, therefore, 
naturally emerged as the primary source for 
deriving large-area NPP information.   

Monteith (1972 & 1977) proposed light use 
efficiency (LUE) concept, which represents the 
primary productivity as product of absorbed 

photosysnthetically active radiation (APAR) and 
constant light use efficiency (ε*). Early LUE 
approaches assumed constant ε* until it was found 
that ε* varies between and within vegetation 
types. These variations may be attributed to 
variable temperature and water situations, which 
cause reduction in the LUE, especially in arid and 
semi-arid environments (Bradford et al. 2005; 
Nouvellon et al. 2000; Ruimy et al. 1994). LUE 
models such as GLO-PEM (Prince & Goward 1995) 
and Carnegie-Ames-Stanford-Approach (CASA) 
(Field et al. 1995; Potter et al. 1993) take into 
account the down-regulators of constant ε* in the 
form of environmental stressors (both temperature 
and water) derived from meteorological measure-
ments. In the CASA model, the water stress scalar 
(Ws) is represented as relative soil moisture deficit 
determined using a simple one-layer bucket model. 
Some studies have also focused on deriving canopy 
water stress by using satellite observations in 
optical and infrared regions (Jackson 1982; Moran 
et al. 1994; Sandholt et al. 2002; Xiao et al. 2002). 
The majority of these studies used optical and 
thermal infrared (TIR) data to generate an index 
as a proxy of water stress (Ws=1-ET/ETm) and is 
defined as a function of the ratio between actual 
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and potential evaporation rates on the earth 
surface. The TIR data is linked to evaporative 
cooling and thus, linked to soil moisture and water 
stress, whereas the shortwave infrared (SWIR) is 
sensitive to canopy water content and the indices 
derived from SWIR and near infrared (NIR) 
wavelengths have been found to be sensitive to 
water stress (Fensholt & Sandholt 2003). A few 
studies have demonstrated the use of stress 
indices derived either from TIR (Sandholt et al. 
2002; Moran et al. 1994) or SWIR (Xiao et al. 2005) 
bands as a measure of Ws in biospheric NPP 
models and found that the inclusion of a water 
stress parameter directly from satellite improves 
accuracy of NPP modeling.  

The MODIS, onboard Terra and Aqua satellites, 
provides observations in 36 spectral bands 
covering visible (459-479 nm, 545-565 nm, 620-670 
nm), NIR (841-875 nm, 1230-1250 nm), SWIR 
(1628-1652 nm, 2105-2155 nm) and TIR bands at 
spatial resolution ranging from 250 m to 1 km. The 
availability of a diverse range of observations by 
MODIS offers ample scope for deriving information 
on key variables of NPP models such as fPAR and 
water stress scalars. The present study was 
carried out with two objectives: (i) comparison of 
scaling LUE by using water stress scalars derived 
from different remote sensing methods, (ii) 
estimation of the primary productivity of wheat in 
Haryana state of India by LUE approach with 
down-regulators.   

Materials and methods 

Study area 
Haryana (27° 39' - 30° 55' N and 74° 27' - 77° 

36' E) is an agrarian state of India (Fig. 1). 
Geologically, Haryana has been divided into three 
zones: the Shiwalik hills, Aravali hills and Indo-
Gangetic alluvial plain. Nearly 97% of the state 
lies in Indo-Gangetic alluvial plain. The land is 
generally flat, covered with loamy soil and highly 
suitable for agriculture. Annual rainfall in this 
state varies from more than 1000 mm in hilly 
tracts to less than 300 mm in the south-western 
districts viz., Bhiwani, Hisar and Sirsa Districts 
(Dahiya et al. 1988). The annual evapo-
transpiration of the region is quite high and 
exceeds 1200 mm all over the state. The rainfall 
received during Rabi season (December-March) 
also varies across the state with high rainfall in 
northern districts viz., Kurukshetra, Ambala, 

Kaithal as compared to southwestern districts viz., 
Bhiwani, Mahendragarh and Hisar. Food grain 
crops account for 72.4% of the total cropped area, 
of which wheat occupies 42.7%, rice 14%, pearl 
millet 19.3%,  pulses 17.4%, and others 13.5%. 

Data 
We used 8-day composites of surface reflect-

ance at two resolutions, 250 m and 500 m, and 
land surface temperature at 1km resolution. The 
moderate resolution (250 m) level-3 product 
(MOD09Q1) was used to derive the fraction of 
absorbed photosynthetically active radiation 
(fPAR). The 8-day composite of the seven-band 
surface reflectance (MOD09A1) formed the basic 
input for deriving the water stress scalar. The 
MOD09 products were corrected for the effects of 
atmospheric gases, thin cirrus clouds and aerosols 
(Vermote & Vermeulen 1999). The MODIS product 
also included information on cloud interference. 
The other satellite input was MODIS level-3 land 
surface temperature (MOD11A2) as a composite of 
daily land surface temperature derived using split-
window algorithms. These satellite data were 
created by the MODIS land discipline team 
(http://modis-land.gsfc.nasa.gov) and distributed  
to users freely through EOS Data Gateway 
(http://edcimswww.cr.usgs.gov/pub/imswelcome). The 
8-day composite images of above data at 250 m, 
500 m and 1 km resolution were acquired for the 
period from 25th November, 2003 to 6th April, 
2004, which matched with the growing season of 
wheat during year 2003-04. 

Meteorological variables were collected for the 
period of entire growing season of wheat, particu-
larly daily maximum and minimum temperatures 
recorded over 10 stations falling in Haryana and 
its surroundings. In the present study, distribution 
of the wheat crop during 2003-04 was obtained 
from major crops classified from AWiFS (Advance 
Wide-Field Sensor) data (Patel et al. 2007). 
Ground-based crop yield and acreage of wheat crop 
in the same season were taken from Bureau of 
Economic Survey (BES) for validation of results. 

NPP model 
In the LUE approach (Monteith 1972 & 1977), 

NPP is taken as the product of PAR absorbed by 
the vegetation canopy and LUE:  

NPP = APAR × LUE  (1) 
where, NPP is net primary productivity (g         
Dry  mass  (DM)  m-2 time-1), APAR is the absorbed  
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photosynthetically active radiation (MJ m-2 time-1) 
and LUE is the light use efficiency (g MJ-1).        
The APAR itself is a product of incident photosyn-
thetically active radiation (PAR) and the fraction 
of absorbed PAR (fPAR) which is easily 
quantifiable from remote sensing. The fPAR in 
general had strong linear relationships with NDVI 
and was derived either by using vegetation specific 
regression constants of such relationship (Potter et 
al. 1993; Prince & Goward 1995) or linear scaling 
based on NDVI (Sellers et al. 1996). In the present 
study, fPAR was quantified from NDVI as:    

fPAR = [(NDVImax- NDVImin) (fPARmax– 
fPARmin)/(NDVImax–NDVImin)]+fPARmin               (2) 

where,  NDVImax and  NDVImin are defined as 98th 
and 2nd percentiles,  respectively of  maximum 
and minimum NDVI of wheat during its growth 
cycle. fPARmin and fPARmax are set equal to 0.01 
and 0.95, which represents the extremes of 
potential canopy absorption of PAR (Los et al. 
2000; Sellers et al. 1996). The maps of fPAR thus, 
obtained at 8-day interval were later multiplied 
with corresponding interpolated surfaces of 
incident PAR for estimating APAR for the same 

 

 
 
 

Fig. 1.  Study area with district boundaries. 
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interval. The daily incident PAR as a fraction of 
the incoming solar radiation was calculated using 
Bristow & Campbell (1984) model. 

Down-regulation of maximum LUE 
LUE varies spatially across vegetation types 

and temporally within individual plant or biome 
types due to variable temperature and moisture 
conditions. An assumption of constant LUE in 
NPP estimation is unrealistic. We therefore, down-
regulated the maximum LUE during times of 
moisture and temperature stress. The LUE thus 
was determined using following equation (Xiao et 
al. 2005): 

LUE = ε* Ts Ws                                                                           (3) 
where, ε* is maximum light use efficiency of 
wheat, 2..8 g/MJ PAR (Fischer 1983; Garacia et al. 
1988; Khan 2000), and Ts and Ws are temperature 
and water stress scalars, respectively. The Ts is 
estimated at each time step, using the equation 
developed for the terrestrial ecosystem model 
(Raich et al. 1991): 

                  (T – Tmin) (T- Tmax) 
 Ts  =  --------------------------------------------          (4)  
          [(T – Tmin) (T – Tmax)] – (T – Topt)2]  

where, T is the interpolated surface of mean 
monthly temperatures from stations, Tmin, Tmax, 
and Topt are minimum, maximum, and optimal 
temperature for photosynthetic activities, 
respectively. For wheat, we used 5.0, 35.0 and 22.0 
°C for Tmin, Tmax, and Topt, respectively (Porter & 
Gawith 1999).  

Over the last two decades, several remote 
sensing techniques have been used to infer water 
stress as a function of relative evapotranspitation 
deficit. In the present study, we chose three 
formulations as a proxy for the Ws factor: 
vegetation temperature condition index (VTCI, 
Wan et al. 2004), water deficit index (Moran et al. 
1994), and land surface wetness index (Xiao et al. 
2002). 

Vegetation temperature condition index 
The vegetation temperature condition index 

(VTCI) is an index derived by parameterization of 
LST verses NDVI scatter plot for each 8-day 
interval of MODIS data used in the study. It is 
defined as the ratio of LST differences among 
pixels with a specific NDVI value in a sufficiently 
large study area. The value of VTCI ranges from 0 
to 1. Lower values of VTCI represent lower 
evapotranspiration rates (ET). Mathematically, 
the water stress scalar from VTCI is written as: 

                               LSTmax  -  LST 
VTCI= (ET/ETm) =  --------------------                  (5) 

                               LSTmax -  LSTmin 
where, LSTmax = a + b × NDVI, LSTmin = a' + b' × 
NDVI 

The LSTmax and LSTmin are maximum and 
minimum LSTs of pixels, which have same NDVI 
values in a study region, respectively and LST 
denotes the observed actual LST value of pixels. 
Coefficient a, b, al and bl were computed from LST 
verses NDVI scatter plot. for every 8-day interval. 
The LSTmax and LSTmin represent “dry” and “cold” 
edges, respectively.  The slope and intercept term 
of these edges were obtained by simple least 
square regression. 

Water deficit index 
The water deficit index (WDI) quantifies the 

relative rate of latent heat flux leaving a surface 
by evaporation and transpiration, where the 
surface is a mixture of vegetation and bare soil. 
The WDI is defined as 0.0 for well-watered 
conditions (i.e., a completely wet surface, where 
latent heat flux is limited only by atmospheric 
demand) and 1.0 for no available water (i.e., a 
completely dry surface where there is no loss of 
water or little evapotranspiration). Recently, 
Verstraeten et al. (2006) has formulated WDI 
based on a triangle formed by surface-air 
temperature differential (ΔLST) and vegetation 
index. Mathematically WDI from ΔLST/NDVI 
triangle can be expressed as: 

 
 

       (6) 
 

 
 
where, ∆LST0 denotes the difference between the 
LST and ambient air temperature. ∆LSTmin and 
∆LSTmax denotes maximum and minimum 
evapotranspiration lines, respectively, and 
represented as  regression lines such as ∆LSTmin= 
amin  × NDVI + bmin and  ∆LSTmax= amax × NDVI + 
bmax.  The coefficients such as  amin , amax, bmin, 
and bmax were computed from ∆LST0  verses 
NDVI scatter plot  for each 8-day interval.  

Land surface wetness index 
The land surface wetness index (LSWI) is 

linear combination of NIR and SWIR bands and 
calculated as: 
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                  δNIR - δSWIR 
LSWI =     -----------------                                    (7) 
                  δNIR +  δSWIR 

where, δNIR and δSWIR are reflectance in NIR (841-
875 nm)  and SWIR (1628-1652 nm) regions, 
respectively, for each 8-day composite of MODIS 
data. We used LSWI to estimate seasonal 
dynamics of the water stress scalar (Ws) based on 
the simple approach of Xiao et al. (2005): 

               1 + LSWI 
  Ws  =     ----------------                                       (8) 
               1 - LSWImax 

where, LSWImax is the maximum LSWI within the 
wheat growing season for individual pixels. 

Approach 
The NPP of wheat for each 8-day interval 

corresponding to MODIS composite imagery was 
primary estimated at the pixel level as a product of 

absorbed PAR (APAR) and light use efficiency 
estimates obtained from down-regulation of 
maximum LUE of C3 crops (i.e. 2.8 g MJ-1). The 
APAR for every 8-day interval was estimated  as  a 
product of incident PAR and the fraction of 
photosynthetically active radiation (fPAR) by the 

canopy during the same time period. The 
conversion of APAR into NPP for each time step i 
was established with a temporally variant light 
use efficiency obtained by reducing ε* by water and 
temperature stress scalars (Eq.3). The methodology 
depicted in Fig. 2. 

The 8-day composites of surface reflectance 
products (MOD09Q1) covering the entire wheat 
growing season (25th November to 6th April, 2004) 
were first reprojected to Alber’s equal area 
projection with spheroid and datum as WGS 84. 
Time series of normalized difference vegetation 
index (NDVI) were derived from these surface 
reflectance and converted into the fraction of 
absorbed photosynthetically active radiation 
(fPAR) by equation (2). Since no measurements 
were available for incoming solar radiation, the 
Bristow & Campbell (1984) formulation based on 
temperature was used to obtain daily estimates of 

solar radiation. The empirical constants of the 
Bristow and Campbell model were parameterized 
for Hisar district (Patel et al. 2007) and used for all 
stations falling in Haryana. The estimates of solar 
radiation over 10 stations were later subjected to 
Inverse  Distance  Weighted  interpolation in order  

 

 
 

Fig. 2.  The steps involved in the estimation of NPP (schematic). 
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to obtain solar radiation for MODIS pixel 
resolution. Incident PAR was approximated as 45 
percent of incoming solar radiation. Similarly, the 
maximum and minimum daily air temperatures 
were interpolated and converted to an 8-day 
average in a 1-km grid. Crop yield data at the 
district level was converted to seasonal NPP of 
wheat by using a harvest index (0.35) and 
moisture content. 

Results and discussion 

Spatial pattern of NPP components 

Spatial variation, in different intermediate 
components of the NPP model, were analyzed for 
the post-anthesis stage of 6-13 March, 2004 (Fig. 
3). The NDVI as a measure of fPAR ranged from 
0.18 to 0.78 with the highest values observed in 
northern part of state. The PAR shows large 
spatial variation with higher PAR in south-bound 
areas compared to north-bound areas. Despite 
high PAR in the southern part of area, absorbed 
PAR was relatively low (<35 MJ m-2) due to less 
vegetation cover as depicted in the NDVI image. 
The higher APAR (range 45-55 MJ m-2) was 
mainly observed in the northern area with better 
crop cover conditions, particularly during this post-
anthesis stage. A wide range of variation in APAR 
could be much more related to crop cover 
percentage than variability in incident PAR over 
space. According to equation (3), the light use 
efficiency varied between 1.85 and 2.72 g MJ-2 
depending upon spatial variation in soil moisture 
and environmental factors. The LUE remained 
lower than potential or maximum LUE observed 
for wheat under optimal crop growing 
environment. The biomass productivity in terms of 
NPP for the given 8-day period ranges from 57.6 g 
m-2 to 165.8 g m-2. Such large geographical 
variation in productivity for irrigated wheat crop 
of Haryana mainly arose from differences in 
absorbed PAR. It seems that LUE has little 
influence on NPP in irrigated wheat crop. 

Seasonal dynamics of NPP and light use 
efficiency 

The LUE model was implemented with 
environmental regulators at 8-day intervals to 
estimate the temporal pattern of NPP. The 
resultant seasonal dynamics of NPP using three 
water scalars are presented together with NDVI 
for Hisar District (Fig. 4).  During the early part of  

the wheat growing season, i.e. DOY 333 to 357 of 
2003, both NPP and NDVI stood at very low levels 
due to  less photosynthetic activity in the absence 
of canopy cover. From DOY 1 of 2004, despite 
NDVI increasing suddenly, NPP only gradually 
increased until DOY 25 due to reduced temperature 
and PAR in January because temperature below 
thresholds limited photosynthesis activity. The 
NPP showed a lag behind NDVI and attained its 
peak at post-anthesis stage between DOY 57 and 
65 of 2004. The DOY 65 onwards, both the NPP 
and NDVI declined in similar fashion on account of 
senescence as the crop reached to maturity or 
harvest. Among the NPP simulated with different 
water scalars, the NPP by using the water scalar 
(Ws) from LSWI remained higher during the active 
crop growth period (i.e. DOY 33 to 81 of 2004) than 
those of Ws (VTCI) and Ws (WDI). These 
differences in simulated NPP were mainly 
explained by variation in light use efficiencies 
resulted from different water scalars (Fig. 5). 
Higher light use efficiency from Ws (LSWI) led to 
high levels of NPP during period of maximum 
growth accumulation. Furthermore, LUE from Ws 
(LSWI) was found in close agreement with 
experimentally observed LUE at Hisar (Sharma et 
al.  2000). These results also revealed that LSWI 
correctly captured water stress effects and down-
regulated maximum LUE (ε*) within the range 
(2.0–2.8 g/MJ PAR) of experimentally observed 
LUE of wheat during the period (DOY 33-89 of 
2004). The large difference in LUE (LSWI) from 
observed values during the early phase of wheat 
growth was mainly due to less sensitivity of SWIR 
wavelength to canopy water content/water stress 
when canopy cover is sparse (NDVI < 0.4).  

Spatial pattern of NPP 
The NPP simulated at 8-day interval was 

summed over the wheat growing season (Fig. 6). A 
wide range of variation existed across different 
parts of Haryana. In general, high levels of NPP 
were observed in Kaithal, Kurushretra and 
Fatehabad compared to Bhiwani, Mahendragarh, 
Rewari and Sirsa in southern and western 
Haryana. Results also revealed comparatively high 
seasonal NPP of wheat over entire wheat growing 
areas when simulated with light use efficiency 
derived using LSWI as water stress scalar.  
Whereas seasonal NPP estimates obtained with 
water VTCI and WDI as stress scalars were quite 
low.  
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Fig. 4.  Temporal dynamics of net primary productivity (NPP) of wheat (Hisar District, India; 29° 10’ N, 75° 45’ E). 
 

 
Fig. 5. Comparison of the adjusted light use efficiency from different water stress scalars and experimental 
LUE. 
 
 
 

Day of year (8-day) 
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Fig. 7.  Temporal pattern of APAR and LUE over Kaithal and Bhiwani districts in India.  LUE values depicted 
were calculated using the LSWI water stress scalar. 

 
 

 
 
Fig. 8. Comparison of simulated and observed NPP of wheat crop in Haryana (Ambala, Panchkula and 
Yamunanagar districts were not considered). 
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Spatial distribution of NPP from LUE (LSWI) 
had a maximum frequency in the range of 950 to 
1200 g DM m-2 and mean NPP equaled 1030          
g DM m-2 (Fig. 6), while the mean seasonal NPP of 
wheat obtained with LUE (VTCI) and LUE (WDI) 
were 880 g DM m-2 and 869 g DM m-2, respectively. 
Spatial variation in NPP over different districts 
was mainly controlled by dynamics of absorbed 
PAR (APAR), as illustrated in Kaithal and 
Bhiwani districts (Fig. 7).  Comparatively higher 
NPP in Kaithal than Bhiwani was found due to 
high levels of APAR throughout growing season of 
wheat. The Wilcoxon test (Wilcoxon statistic=0.0, 
p<0.0001) and positive mean bias (+19.3 MJ m-2 
APAR) explained the tendency of APAR in Kaithal 
to be greater than that of Bhiwani. Light use 
efficiency also varied between two regions, 
particularly during the period of maximum growth 
accumulation however, its contribution in 
determining NPP was relatively low. The probability 
of wilcoxon test for LUE in Kaithal to be greater 
than that of Bhiwani is non-significant (Wilcoxon 
statistic=52.5, p=0.14) but positive value of mean 
bias (+0.1) reflects the contribution of LUE in 
causing differences in NPP.  

Comparison of simulated and ground-based 
NPP 

Seasonal NPP of wheat compared against 
ground-based crop NPP estimates obtained from 
crop statistics at district level revealed that LUE 
(LSWI) provided satisfactory estimates of seasonal 
NPP of wheat in Haryana (Fig. 8). Relative 
deviation between simulated and observed crop 
NPP was within range of ±10% for LUE based on 
LSWI. The magnitude of relative deviation with 
LUE (VTCI) and LUE (WDI) were quite large 
(>±15%) for majority of districts in Haryana. A 
close relationship was observed between simulated 
NPP from LUE (LSWI) and ground based crop 
NPP (R2 = 0.39). The Root  Mean Square Error 
(RMSE) associated with seasonal NPP estimates of 
wheat with LUE (LSWI) is 64.9 g DM m-2 which 
was less than 10% of mean observed crop NPP. 
The other two methods i.e., LUE (VTCI) and LUE 
(WDI) showed relatively higher RMSE of 111.0 
and 108.0 g DM m-2, respectively. 

Conclusions 

Results showed that the SWIR band of MODIS 
had good success in deriving water stress as down-

regulator of maximum light use efficiency (ε*) of 
wheat and presumably other C3 crops for NPP 
modeling. Light use efficiency of wheat obtained 
with water stress scalars by different approaches 
varied both spatially and temporally. Amongst 
three approaches, reducing maximum LUE with 
LSWI captured the trend observed in LUE of 
wheat experimentally over Hisar District. While 
two other approaches (VTCI, WDI) based on 
Ts/NDVI space failed to represent temporal 
variation in LUE due to their limited sensitivity to 
moisture stress when canopy cover is full. NPP 
estimates of wheat obtained from LUE based on 
LSWI showed good agreement with observed NPP 
of wheat in Haryana. 
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